На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Свежие комментарии

  • Ангел Смерти
    С этого эксперимента началась целая ветка психологии.На 365 Дней Запеч...

УФ-излучение не снижает жизнепригодность экзопланет в системах красных карликов

Экзопланета Проксима b в представлении художника

Рис. 1. Экзопланета Проксима b в представлении художника. Над горизонтом изображена звезда Проксима Центавра, а правее и выше от нее — двойная звезда Альфа Центавра АВ. Масса планеты Проксима b немного больше массы Земли, а температура на ее поверхности вполне допускает присутствие воды в жидкой фазе. Рисунок с сайта eso.org

С тех пор как стало известно, что вокруг многих звезд вращаются планеты, в том числе и похожие на Землю, не утихают споры о том, может ли там существовать жизнь. Естественное требование: экзопланета должна быть в зоне обитаемости, чтобы на ней могла существовать жидкая вода. Но у красных карликов — самого распространенного типа звезд в нашей Галактике, к которому относится и ближайшая (помимо Солнца) к нам звезда Проксима Центавра, — зона обитаемости маленькая и находится очень близко к звезде. Учитывая высокую активность красных карликов, это означает, что уровень радиации на поверхности экзопланеты должен быть очень высоким. Однако проведенное учеными из США моделирование условий на таких экзопланетах показало, что интенсивность УФ-излучения на них ниже, чем она была на Земле ранних этапах развития жизни.

Существование экзопланет — планет, находящихся вне Солнечной системы, — было надежно установлено в 1992 году (A. Wolszczan, D. A. Frail, 1992. A planetary system around the millisecond pulsar PSR1257 + 12). Сейчас, благодаря усовершенствованным средствам наблюдения и методам обработки информации, открытие новых экзопланет происходит регулярно. В каталоге экзопланет на сегодняшний день числится более 4000 экзопланет из более чем 3000 планетных систем. Это только те экзопланеты, которые надежно подтверждены с помощью наземных телескопов, — ожидающих подтверждения кандидатов в экзопланеты еще больше.

Имеют экзопланеты и ближайшие к нам звезды (в частности, уверенность в существовании экзопланеты у звезды Барнарда — четвертой по близости к Солнцу после трех звезд системы Альфа Центавра — появилась в прошлом году, см. I. Ribas et al., 2018. A candidate super-Earth planet orbiting near the snow line of Barnard’s star). Некоторые из этих экзопланет располагаются в так называемой обитаемой зоне: условия на их орбитах близки к земным и теоретически там возможно существование жизни (прежде всего исходя из возможности наличия на этих планетах воды в жидкой фазе, поскольку это необходимый растворитель во многих биохимических реакциях).

Близкие по размеру к Земле экзопланеты называются землеподобными или экзопланетами земного типа. А если землеподобная экзопланета еще и находится в зоне обитаемости, то ее называют двойником Земли. Понятно, что именно такие экзопланеты представляют самый большой интерес как с точки зрения изучения внеземной жизни, так и с точки зрения подбора будущего «дома» для человечества. Поиск экзопланет земного типа — ключевая часть миссии космического телескопа «Кеплер», запущенного в марте 2009 года. Несмотря на то, что в 2013 году телескоп частично вышел из строя, информация с него продолжала поступать до прошлого года, а анализ всех полученных данных займет еще некоторое время. По состоянию на март 2019 года им было обнаружено больше 2600 экзопланет.

Ближайшая к Земле звезда после Солнца — красный карлик Проксима Центавра, входящий в состав звездной системы Альфа Центавра, — также имеет свою планетную систему. В 2016 году было объявлено о том, что вокруг этой звезды обращается как минимум одна планета, Проксима b (G. Anglada-Escudé et al., 2016. A terrestrial planet candidate in a temperate orbit around Proxima Centauri), а буквально несколько дней назад на конференции Breakthrough Discuss, организованной в рамках программы исследования жизни во Вселенной Breakthrough Initiativesбыло заявлено о том, что вокруг этой звезды обращается еще одна планета (но она, разумеется, пока находится в статусе кандидата в экзопланеты). Проксима b немного больше Земли и при этом находится в обитаемой зоне. Большая полуось ее орбиты равна всего 0,05 а. е. (то есть она в 20 раз ближе к своей звезде, чем расстояние от Земли до Солнца), но поскольку светимость красного карлика (Проксима относится к спектральному классу М), гораздо ниже, чем у звезды вроде Солнца, то Проксима b получает как раз столько тепла, чтобы вода могла на ней существовать в жидкой фазе. Но достаточно ли этого, чтобы там могла существовать жизнь? До недавнего времени считалось, что нет.

Красные карлики составляют большинство звезд в нашей Галактике (например, двадцать из тридцати ближайших к Земле звезд относятся к этому типу). Такие звезды проявляют гораздо большую активность, чем Солнце. Мощные вспышки и связанные с ними потоки ионизированных частиц (звездный ветер) губительны для возможной жизни на экзопланетах, вращающихся вокруг красных карликов: во время вспышек поток ультрафиолета может увеличиваться на два порядка, а, как известно, сильное УФ-излучение повреждает клетки и нуклеиновые кислоты. Все это усугубляется тем, что зона обитаемости находится очень близко к звезде и эти экзопланеты, скорее всего, лишены защитного магнитного поля: из-за приливного захвата они всегда обращены к звезде одной стороной и у них отсутствует вращение ядра, порождающее магнитное поле.

Однако значимые выводы о жизнепригодности планетных систем красных карликовможно делать только после как можно более точного расчета мощности достигающего планеты коротковолнового излучения, которое обладает наибольшей биологической активностью (по сравнению с инфракрасным излучением и излучением видимой части спектра) и представляет наибольшую опасность для живых организмов. Из трех видов коротковолнового излучения (ультрафиолетовое, рентгеновское и гамма-излучение) важнее всего оценить уровень ультрафиолетового, поскольку на его долю приходится подавляющая часть излучаемой энергии. Именно это и проделали астрономы из Корнеллского университета (США) Джек О’Мэлли-Джеймс (Jack O’Malley-James) и Лиза Калтенеггер (Lisa Kaltenegger). Результаты опубликованы в недавнем выпуске журнала Monthly Notices of the Royal Astronomical Society.

Ученые смоделировали условия на поверхности четырех ближайших потенциально обитаемых экзопланет: Проксимы b, TRAPPIST-1 eRoss-128 b и LHS-1140 b. Поскольку спектр излучения родительских звезд хорошо известен, ученые могли оценивать вероятный уровень ультрафиолетового излучения на поверхности этих экзопланет, исходя из различных вариантов состава и плотности атмосферы: от аналогичного современной земной атмосфере до очень тонкой и нарушенной в результате звездных вспышек бескислородной атмосферы, плохо блокирующей ультрафиолет. Как и следовало ожидать, моделирование показало, что по мере истощения атмосферы и снижения в ней уровня озона всё больше ультрафиолета достигает поверхности. Но даже при самом высоком уровне показанного моделью уровня УФ-излучения на поверхности экзопланет (во время вспышек на родительской звезде при тонкой бескислородной атмосфере), он все же был ниже того, что получала Земля в начале архея (4,0–3,9 млрд лет назад), когда на Земле зародилась жизнь (рис. 2). Сравнительные данные для ранней Земли авторы брали из разработанной ранее при участии одного из них модели, в которой оценивался спектр солнечной радиации для различных периодов эволюции Земли (L. Kaltenegger et al., 2007. Spectral Evolution of an Earth-like Planet). В этой модели обобщались известные на тот момент геологические данные, что позволило получить зависимость температуры и содержания в атмосфере шести основных газов (H2O, CO2, CH4, O2, O3, N2O), и, как следствие, — графики отраженного атмосферой излучения и спектральные графики солнечной радиации, достигающей поверхности Земли. Светимость Солнца в архейские времена авторами модели была принята на уровне 71% от современной.

Рис. 2. Моделирование потока УФ-излучения для четырех экзопланет

Рис. 2. Моделирование потока УФ-излучения для четырех экзопланет (Проксимы b, TRAPPIST-1 e, Ross-128 b и LHS-1140 b). Линии разных типов обозначают разные модельные атмосферы планет: ТОА — отсутствие атмосферы; Р = 1 bar — давление у поверхности составляет 1 бар (аналог современной земной атмосферы); Р = 0,5 bar — при давлении 0,5 бар; Р = 0,1 bar — при давлении 0,1 бар; Anoxic — при бескислородной атмосфере. Для сравнения даны графики для современной Земли (Modern Earth) и Земли периода раннего архея (Early Earth). По горизонтальной оси — длина волны (в нм); по вертикальной оси — поток излучения (в В·м−2·нм−1). Рисунок из обсуждаемой статьи в Monthly Notices of the Royal Astronomical Society

Таким образом авторы показывают, что ультрафиолетовое излучение не является ограничивающим фактором жизнепригодности ближайших к Земле экзопланет, входящих в планетные системы красных карликов класса М, и ставят обратный вопрос: а не является высокий уровень радиации необходимым условием для развития жизни на ранних этапах развития планет земного типа? Ведь известно, что в некоторых биомолекулах, например, нуклеиновых кислотах, при облучении могут возникнуть мутации (в том числе и полезные). Возможно, признаки жизни надо искать именно в планетных системах активных звезд.

Не все длины волн ультрафиолетового излучения одинаково губительны для биологических молекул. Чем меньше длина волны, тем сильнее биологическое действие излучения. Чтобы оценить потенциальную обитаемость миров с различным объемом получаемого излучения, авторы приводят обобщенные данные о том, как меняется выживаемость при разных длинах ультрафиолетового излучения бактерий-экстремофилов Deinococcus radiodurans — одного из самых радиационно-устойчивых организмов на Земле. Оказывается, для того, чтобы спровоцировать одинаковый уровень смертности в популяции этих бактерий, доза УФ-излучения длины 360 нм должна быть на три порядка выше, чем доза УФ-излучения длины 260 нм.

История эволюции жизни на Земле демонстрирует различные стратегии выживания в условиях высокого уровня радиации: защитные пигменты, биофлуоресценция, жизнь под водой или под землей. Авторы уверены, что такие же механизмы защиты могут использовать организмы и на других планетах (если они там есть). В частности, в одной из своих предыдущих работ (J. O'Malley-James, L. Kaltenegger, 2016. Biofluorescent Worlds: Biological fluorescence as a temporal biosignature for flare star worlds) они писали, что допускают возможность существования на планете Проксима b биосферы, использующей биологическую флуоресценцию как защитный механизм от вспышек ультрафиолетового излучения Проксимы Центавра (правда, эта статья не была опубликована в рецензируемом журнале).

Авторы считают, что их новые результаты в целом снимают главное возражение против существования жизни на ближайших экзопланетах земного типа. Теперь осталось узнать, есть ли там атмосфера и жидкая вода.

Источник: Jack T. O’Malley-James, L. Kaltenegger. Lessons from early Earth: UV surface radiation should not limit the habitability of active M star systems // Monthly Notices of the Royal Astronomical Society. 2019. V. 485. DOI: 10.1093/mnras/stz724.

Владислав Стрекопытов

Ссылка на первоисточник

Картина дня

наверх