На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Мозг по-разному распределил сигналы перед реальным и воображаемым движением

Ученые установили, как активность нашего мозга при воображаемом движении отличается от его работы во время реального действия. Оказалось, что в обоих случаях возникает предшествующий сигнал в коре головного мозга, однако при воображаемом движении он не имеет четкой привязки к конкретному полушарию. Полученные данные потенциально могут использоваться в медицинской практике для создания нейротренажеров и контроля восстановления нервных сетей у пациентов, перенесших инсульт.

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Cerebral Cortex.

alt

Фото с кнопками с лампочками внутри, в ответ на вспышку которых испытуемым необходимо было нажать кнопку. Источник: Николай Сыров.


Перед тем, как мы берем ручку или ставим чашку, в головном мозге формируется полная картина этого действия. Такие зрительно-моторные преобразования обеспечивают точность наших движений. Знания об этих механизмах используются при реабилитации пациентов после инсультов для восстановления двигательной активности. Но не всегда мы доделываем начатое движение. В этом случае визуальная информация поступает в моторные — отвечающие за движения — области коры, но запуск реакции в какой-то момент блокируется, и умственное усилие не заканчивается реальной активацией мышц. До сих пор не известно, чем активность мозга перед явным движением отличается от той, которая возникает перед воображаемым действием. Именно это решили выяснить исследователи, так как понимание нашего движения на уровне мозга позволит улучшить методику двигательной реабилитации после инсульта.

Ученые из Сколковского института науки и технологий(Москва) и Московского государственного университета имени М. В. Ломоносова (Москва) сравнили зрительно-моторные преобразования при реальных и при воображаемых движениях. Для этого авторы провели эксперимент, в котором участвовало 17 добровольцев, их средний возраст составил 23 года. Испытуемые клали руки на панель с двумя кнопками, которые периодически подсвечивались, при этом участники должны были следить только за одной из двух кнопок. Как только кнопка зажигалась, испытуемые должны были нажать на нее или представить, как они это делают, — в зависимости от просьбы ученых. Во время эксперимента исследователи записывали электроэнцефалограмму добровольцев. Затем нейробиологи оценили сигналы участков коры, связанные с подготовкой к движению и возникновением сенсорных ощущений в руках во время выполнения движения.

alt
Вызванные потенциалы, связанные с движением, отсортированные в порядке возрастания скорости реакции. Картина указывает на взаимосвязи процессов, протекающих в сенсомоторных отделах коры перед движением, и скорости самого движения. Источник: Николай Сыров.

При воображаемом и при реальном движении свечение кнопки вызывало активность сенсомоторной коры, но только в случае реальных движений эта активность наблюдалась преимущественно в одном полушарии. Авторы считают, что такой сигнал, возникающий в мозге до начала движения (так называемый предшествующий сигнал), указывал на превращение зрительных стимулов в движение. Сила предшествующего сигнала оказалась максимальной над лобно-центральными областями в полушарии, противоположном активной конечности. То есть, когда человек нажимал кнопку правой рукой, активировалось левое полушарие, и наоборот. При этом продолжительность предшествующего сигнала росла, если человек медленнее реагировал на свет кнопки и нажимал ее с задержкой.

Предшествующий сигнал, связанный с воображаемым движением, не был связан с конкретным полушарием мозга. Возбуждение накапливалось в различных участках сенсомоторных отделов коры до движения. Это указывает на то, что формирование мысленного образа при воображении и при реальном действии происходит по-разному.

Также авторы проверили, появлялись ли в мозге добровольцев какие-либо сигналы, когда зажигалась кнопка, на которой участники не фокусировали свое внимание. Оказалось, что в ответ на нецелевые стимулы у испытуемых также возникал предшествующий сигнал, хотя он был значительно слабее целевого и имел меньшую продолжительность. Наличие такого нецелевого сигнала говорит о том, что при принятии решений в мозге сначала оценивается зрительная информация, а затем принимается решение о блокировке движения. При этом нецелевые сигналы также указывают на то, что моторные области коры не остаются неактивными во время оценки стимула, и только лишь наличие предшествующего сигнала не обязательно приводит к немедленному двигательному ответу.

«В результате инсульта в коре мозга нарушается баланс между торможением и возбуждением, нарушаются межполушарные взаимодействия, взаимодействия моторной коры со зрительными областями. Мы предлагаем использовать связанные с движением сигналы коры для оценки состояния сетей мозга, ответственных за преобразование зрительных сигналов в действия у пациентов после инсульта. Также с их помощью можно анализировать, насколько успешно проходит реабилитация. Такой подход будет высокочувствительным, поскольку позволит зафиксировать улучшения состояния моторных систем мозга еще до того, как они проявятся в самих движениях», — рассказывает один из участников проекта, поддержанного грантом РНФ, Николай Сыров, старший научный сотрудник Сколковского института науки и технологий.


Текст: Пресс-служба РНФ

Adblock test (Why?)

Ссылка на первоисточник

Картина дня

наверх