Свежие комментарии

  • Владимир
    Вы и представить себе не можете, какое кол- во картин люди не только не видели но и не слышали, что такие есть. И ско...Почему эта картин...
  • Валерий Кокарев
    В становлении США, как государства стояла Российская империя, которая защитила и встала на пути английских войск (кол...Почему эта картин...
  • Георгий Михалев
    Скотоводство дело сложное.Как Сталин контро...

«Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба»

«Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба»

В 1959 году советская станция «Луна-3» впервые запечатлела обратную сторону Луны. Так человечество выяснило, что она совсем не похожа на сторону, видимую с Земли — главным образом, почти лишена морей. Ученые считают, что ответ на вопрос, почему наш спутник устроен именно так, прольет свет на прошлое не только Луны, но и Земли. В книге «Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба» (издательство «Альпина нон-фикшн»), переведенной Викторией Краснянской, норвежский планетолог Эрик Асфог рассказывает, что Луна может поведать нам о формировании и природе Солнечной системы — и о том, что это означает для нас. N + 1 предлагает своим читателям ознакомиться с отрывком, в котором рассказывается, почему Луна может быть результатом гигантского столкновения, как эта теория связана с вопросом о происхождении жизни и в чем заключаются недостатки текущего определения планеты.

«Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба»

В нашем понимании процесса аккреции малых тел есть пробелы, и то же самое можно сказать о нашем понимании процесса аккреции крупных тел. Если бы не экспедиции, доставившие с Луны большое количество разнообразных образцов, у нас бы не было теперь уже неопровержимых геологических доказательств того, что наш спутник сформировался в результате гигантского столкновения на поздней стадии.

Это оказалось тем самым ключом, который подошел к замку. Да, аккреция началась с планетезималей, но она длилась до самого слияния отца Земли и матери Тейи.

Существует множество фрагментарных доказательств гипотезы гигантских столкновений, но одно из самых значительных — предсказание лунного океана магмы. Лунная кора двояка во многих отношениях, в том числе по своему составу: там есть возвышенности, состоящие из силикатов кальция и алюминия, известных как полевые шпаты, и низменности видимой стороны, состоящие из базальтов и габброидов. Если наш спутник затвердел из океана магмы, представлявшего собой последствие гигантского столкновения, то возвышенности отлично объясняются как флотационная кора толщиной во много километров — нагромождение кристаллов полевого шпата, которые всплывали на поверхность океана магмы в процессе его затвердевания, как лед плавает на поверхности озера. Кристаллы оливина также затвердевали из остывающей магмы, но они, будучи плотнее, опускались на дно. Если все произошло именно так, посередине между затвердевающей богатой оливином мантией и затвердевающей богатой полевым шпатом корой должен был образоваться остаточный слой, который, согласно геохимическим экспериментам, в конце концов имел бы повышенное содержание калия (К), редкоземельных элементов (rare-earth elements, REE), фосфора (P), урана и тория. Эти элементы относятся к несовместимым со структурой породообразующих минералов и с трудом находят себе место в затвердевающих кристаллах. Свидетельства существования такого слоя, который сокращенно называют KREEP, можно разглядеть во многих районах Луны, но почти исключительно на видимой стороне. Высокая концентрация радиоактивных элементов в этом остаточном слое могла обеспечить поздний разогрев, питавший вулканическое затопление низменностей спустя сотни миллионов лет после того, как остальная Луна затвердела.

«Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба»

Бугристая структура стенок жерла на комете 67P/ Чурюмова — Герасименко позволяет строить предположения, как организован материал внутри ядра. Характерный масштаб этих неровностей — примерно 3 м.

ESA / Rosetta / MPS


Когда она была впервые выдвинута в 1970-е гг., теория гигантского столкновения, как в свое время и идея тектоники плит, была встречена с огромным скептицизмом. Каждый находил в ней что-то, с чем нельзя было согласиться. В основе теории лежало мощное утверждение, что вместо формирования землеподобных планет из отдельных планетезималей при прямой аккреции, вначале образовались десятки олигархов размером от Меркурия до Марса, а потом уже началась битва всех против всех. Сегодня эта мысль о формировании землеподобных планет на поздней стадии, когда олигархи поглощают друг друга, — основа всех главных теорий возникновения Луны. Думаю, она имеет глубокую связь с вопросом о происхождении жизни, потому что может максимизировать разнообразие землеподобных планет — этот невероятный паноптикум, который невозможно объяснить только аккрецией планетезималей.

Вдобавок к таким идеям об иерархическом слиянии, о планетезималях, поглощающих друг друга, чтобы стать эмбрионами, и далее — во все более жестоких столкновениях — планетами, другим прорывом оказалось предположение, что газовые гиганты после своего формирования то придвигались ближе к Солнцу, то отходили от него, как замечтавшиеся конькобежцы на льду замерзшего пруда. Вследствие этого под влиянием движения внешних планет-гигантов менялась сама структура Солнечной системы.

Мысль, что Юпитер вообще сильно сдвигался, звучит абсурдно: он в сотни раз тяжелее Земли и имеет момент импульса больше, чем у Солнца. Но дела обстоят еще хуже. В модели «великой миграции», описанной ниже, Юпитер перемещается с расстояния в 3 а. е. до 1,5 а. е., а потом, в связке с Сатурном, отодвигается на отметку 5 а. е. То, что планеты-гиганты ведут себя таким образом, может объяснить очень многое, особенно структурный и химический (по составу) зазор в Солнечной системе; остается только проверить, верна ли эта гипотеза в деталях. Тем не менее сейчас никаких сомнений не вызывает следующее: что бы ни делали землеподобные планеты, они делали это под влиянием этих странствующих мастодонтов.

Причина миграции гигантских планет звучит невероятно и должна приводить в восторг популистов: в неравновесное состояние Юпитер и Сатурн привело гравитационное воздействие миллиардов планетезималей. Чтобы понять, как такое могло произойти, давайте взглянем на сами планетезимали: откуда они взялись и через что прошли. Начнем с внешней части Солнечной системы, где зародились планеты-гиганты (по крайней мере, мы так сейчас думаем — хотя мы не должны быть так уж в этом уверены).

***

Триллионы ледяных тел обращаются вокруг Солнца далеко за орбитой Нептуна. Основную их массу, сосредоточенную на расстоянии от 30 до 50 а. е., называют объектами пояса Койпера. В их число включают и Плутон, девятое по размеру тело, самостоятельно обращающееся вокруг Солнца, и Эриду, не такую большую, но занимающую девятое место по массе. (На случай, если вам интересно, все крупные спутники Сатурна, Юпитера и Нептуна тяжелее Эриды.) Большинство объектов пояса Койпера обращаются вокруг Солнца примерно в той же орбитальной плоскости, что и планеты. Другие — в частности, Эрида, орбита которой наклонена на 44° и имеет такой эксцентриситет, что ее расстояние до Солнца меняется от 38 до 98 а. е., — являются свидетельствами прошлого, детали которого мы все еще пытаемся уяснить. После нескольких блуждающих плутоидов и предсказанных гигантов пояс Койпера постепенно переходит в рассеянное, но гораздо более многочисленное внутреннее облако Оорта, которое простирается на десятки тысяч астрономических единиц, то есть на значительную долю расстояния до ближайшей звездной системы. Где-то в этой внешней тьме, в сотнях или даже тысячах астрономических единиц от Солнца, может таиться холодный объект тяжелее планеты Земля, но эту историю мы пока отложим.

Мы никогда не наблюдали ни одной кометы непосредственно в самом облаке Оорта, так что судим о его объектах теоретически, только по тем из них, которые ныряют глубоко во внутреннюю Солнечную систему, а потом воз вращаются обратно, практически в межзвездное пространство, порой невероятно сияя, как кометы Хейла — Боппа и Хякутакэ. (Высчитать, где находится афелий их орбит, до статочно просто.) Специалисты по космохимии отдали бы все, чтобы заполучить частицу этих исходных конденсатов из предшествовавшего Солнцу молекулярного облака. Во время прохождения такими примитивными кометами перигелия астрономы анализируют сияние напоминающих огненную шевелюру ионизированных газов, сдуваемых с них солнечным ветром.

«Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба»

Астероид Ультима Туле (официально — Аррокот или 2014 MU69) — самое далекое тело, которое когда-либо посещал наш космический аппарат. Этот первичный объект длиной 31 км, находящийся в 1 млрд километров за орбитой Плутона , — контактно-двойное тело , сформировавшееся в результате наиболее ранней аккреции или, возможно, повторной аккреции после медленного столкновения.

NASA / JHUAPL / SwRI


Один из самых интересных из известных нам объектов пояса Койпера — это быстро вращающаяся вокруг своей оси Хаумеа, рядом с которой уже обнаружены два спутника, Хииака и Намака. Хаумеа движется вокруг Солнца по ор бите, напоминающей орбиту Плутона. Она вращается вокруг своей оси так быстро (один оборот за 3,9 часа), что приняла форму вытянутого сфероида с поперечником в почти 2000 км. По скорости вращения она опережает любое тело Солнечной системы диаметром больше 100 км. Длинная ось Хаумеи почти равна диаметру Плутона, но короткая ось в два раза короче. Несмотря на то что площадь ее поверхности гораздо меньше, чем у Плутона или Эриды, Хаумеа — самый яркий транснептуновый объект, поскольку бела, как снег. А если всего этого недостаточно, чтобы разбудить ваше любопытство, она еще и окружена кольцом обломков. Больше того, она динамически связана с десятком других, более мелких объектов пояса Койпера, которые так же ярки и имеют тот же богатый водяным льдом состав поверхности — судя по всему, это бесспорное доказательство того, что все они возникли в результате некоего гигантского столкновения.

Никакой даже общий разговор о Плутоне невозможен без обсуждения, что такое планета. В 2006 г. Международный астрономический союз (МАС) принял резолюцию следующего содержания (я слегка перефразирую): «Планета — небесное тело, обращающееся по орбите вокруг звезды, достаточно массивное, чтобы преодолеть сопротивление твердого тела деформациям и стать округлым под действием собственной гравитации, а также сумевшее расчистить окрестности своей орбиты». Карликовая планета «отвечает всем выше перечисленным критериям, но не расчистила окрестности своей орбиты». Вроде звучит достаточно логично, но так ли это? Во-первых, тут нужно внести поправку, чтобы исключить звезды, обращающиеся вокруг других звезд; они планетами не являются. Как другую крайность мы должны исключить пузырь воды, плавающий внутри космического корабля, поскольку карликовой планетой его не назовешь. Достаточно справедливо, но как насчет Плутона? Гравитация сделала его практически сферой, то есть с этим пунктом все хорошо. Также на его поверхности очень мало ударных кратеров, что говорит о высокой геологической активности.

Тут возникает первая проблема. Вы заметили, что в определении МАС ничего не говорится о геологии, тогда как с геологической точки зрения Плутон — это планета. Другим недостатком этого определения является обозначение непланет как «карликовых планет», потому что различия тут никак не связаны с размером космического тела. Плутон относят к карликовым планетам, потому что он динамически привязан к Нептуну. Если придерживаться определения МАС, то, когда мы обнаружим примерно равную по массе Земле планету, обращающуюся в обитаемой зоне вокруг иной звезды и имеющую на поверхности жидкую воду, но находящуюся под гравитационным влиянием некого супер-Юпитера, нам придется назвать ее карликовой планетой. Это будет просто глупо.

Подробнее читайте:
Асфог, Э. Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба / Эрик Асфог ; Пер. с англ. [Виктории Краснянской] — М.: Альпина нон-фикшн, 2021. — 474 с.

 

 

Ссылка на первоисточник

Картина дня

наверх